Evidence for a two-base mechanism involving tyrosine-265 from arginine-219 mutants of alanine racemase.

نویسندگان

  • S Sun
  • M D Toney
چکیده

A positively charged residue, R219, was found to interact with the pyridine nitrogen of pyridoxal phosphate in the structure of alanine racemase from Bacillus stearothermophilus [Shaw et al. (1997) Biochemistry 36, 1329-1342]. Three site-directed mutants, R219K, R219A, and R219E, have been characterized and compared to the wild type enzyme (WT) to investigate the role of R219 in catalysis. The R219K mutation is functionally conservative, retaining approximately 25% of the WT activity. The R219A and R219E mutations decrease enzyme activity by approximately 100- and 1000-fold, respectively. These results demonstrate that a positively charged residue at this position is required for efficient catalysis. R219 and Y265 are connected through H166 via hydrogen bonds. The R219 mutants exhibit similar kinetic isotope effect trends: increased primary isotope effects (1.5-2-fold) but unchanged solvent isotope effects in the L --> D direction and increased solvent isotope effects (1.5-2-fold) but unchanged primary isotope effects in the D --> L direction. These results support a two-base racemization mechanism involving Y265 and K39. They additionally suggest that Y265 is selectively perturbed by R219 mutations through the H166 hydrogen-bond network. pH profiles show a large pKa shift from 7.1-7.4 (WT and R219K) to 9. 5-10.4 (R219A and R219E) for kcat/KM, and from 7.3 to 9.9-10.4 for kcat. The group responsible for this ionization is likely to be the phenolic hydroxyl of Y265, whose pKa is electrostatically perturbed in the WT by the H166-mediated interaction with R219. Accumulation of an absorbance band at 510 nm, indicative of a quinonoid intermediate, only in the D --> L direction with R219E provides additional evidence for a two-base mechanism involving Y265.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reaction mechanism of alanine racemase from Bacillus stearothermophilus: x-ray crystallographic studies of the enzyme bound with N-(5'-phosphopyridoxyl)alanine.

The crystal structures of alanine racemase bound with reaction intermediate analogs, N-(5'-phosphopyridoxyl)-L-alanine (PLP-L-Ala) and N-(5'-phosphopyridoxyl)-D-alanine (PLP-D-Ala), were determined at 2.0-A resolution with the crystallographic R factor of 17.2 for PLP-L-Ala and 16.9 for PLP-D-Ala complexes. They were quite similar not only to each other but also to the structure of the native p...

متن کامل

Crystal Structures of Lysine-Preferred Racemases, the Non-Antibiotic Selectable Markers for Transgenic Plants

Lysine racemase, a pyridoxal 5'-phosphate (PLP)-dependent amino acid racemase that catalyzes the interconversion of lysine enantiomers, is valuable to serve as a novel non-antibiotic selectable marker in the generation of transgenic plants. Here, we have determined the first crystal structure of a lysine racemase (Lyr) from Proteus mirabilis BCRC10725, which shows the highest activity toward ly...

متن کامل

The involvement of mutation in the serine 83 of quinolone resistant determining regions of the GyrA Gene in resistance to ciprofloxacin in Escherichia coli .

Appearance of bacteria resistant to antibacterial agents puts physicians in trouble and threatens the health of the world. The rapid development of bacterial resistance in Escherichia coli to ciprofloxacin makes difficult the treatment of infectious diseases. So, detection of the locations of possible mutations in gyrase A gene ( gyrA ) in these mutants is very important to determine the mech...

متن کامل

Crystal Structure of a Thermostable Alanine Racemase from Thermoanaerobacter tengcongensis MB4 Reveals the Role of Gln360 in Substrate Selection

Pyridoxal 5'-phosphate (PLP) dependent alanine racemase catalyzes racemization of L-Ala to D-Ala, a key component of the peptidoglycan network in bacterial cell wall. It has been extensively studied as an important antimicrobial drug target due to its restriction in eukaryotes. However, many marketed alanine racemase inhibitors also act on eukaryotic PLP-dependent enzymes and cause side effects...

متن کامل

Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease.

Among the archaea, Methanococcus maripaludis has the unusual ability to use L- or D-alanine as a nitrogen source. To understand how this occurs, we tested the roles of three adjacent genes encoding homologs of alanine dehydrogenase, alanine racemase, and alanine permease. To produce mutations in these genes, we devised a method for markerless mutagenesis that builds on previously established ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 38 13  شماره 

صفحات  -

تاریخ انتشار 1999